
© 1998 – 1999 ProSoft Technologies

GamesBasic
Alpha Version 1.0

Commands And Functions
‘This is a technical guide, expect no user guide :) ’ – D. Hanna

‘If you find any mistakes, please let us know’ – J.Hunter [Author]

Warning
This documentation is Copyright © 1998-1999 ProSoft Technologies (UK), 

No material may be reproduced in whole or in part without written permission
from ProSoft Technologies. While every care has been taken to ensure that
this product is correct, ProSoft Technologies or and of its agents will not be

held legally responsible for any errors or omissions in any GamesBasic
documentation or GamesBasic software.



© 1998 – 1999 ProSoft Technologies

Table Of Contents
Table Of Contents............................................................................................2
Introduction......................................................................................................9

Before you begin............................................................................................9
Copyright and ownership.............................................................................10

Overview......................................................................................................10
Warranty and Guarantee.............................................................................10
Further reading.............................................................................................10

GamesBasic - Interface.................................................................................11
The GamesBasic Interface – IDE.............................................................11

GamesBasic – Features and Bugs...............................................................12
GamesBasic Features..............................................................................12
GamesBasic Bugs....................................................................................12

Expressions....................................................................................................13
An overview of expressions.........................................................................13

What is an expression?............................................................................13
A Simple Expression................................................................................13
Complex Expressions...............................................................................13
Expression Operators...............................................................................14

Variables.........................................................................................................15
An overview of variables..............................................................................15

What is an Variables.................................................................................15
Variables.........................................................................................................16

Declaring variables.......................................................................................16
LET Command.........................................................................................16

Example (Simple Expression)..........................................................................16
Example (Complex Expression)......................................................................16

Variable Scope.............................................................................................17
GLOBAL Command..................................................................................17
LOCAL Command....................................................................................17

Overview of control structures.....................................................................18
What is a controls structure......................................................................18

Control Structures - Loops...........................................................................19
Do..Loop Structure.......................................................................................19

Do Command...........................................................................................19
Loop Command........................................................................................19

Repeat..Until Structure.................................................................................20
Repeat Command....................................................................................20
Until Command.........................................................................................20

Example............................................................................................................20
While..Wend Structure.................................................................................21

While Command.......................................................................................21
Wend Command.......................................................................................21



© 1998 – 1999 ProSoft Technologies

Example............................................................................................................21
Control Structures – Loops Special Commands........................................22

BREAK LOOP Command.........................................................................22
Control Structures - Jumps..........................................................................23

Goto Structure..............................................................................................23
GOTO Command.....................................................................................23

Gosub..Return Structure..............................................................................24
GOSUB Command...................................................................................24
RETURN Command.................................................................................24

IF..Then..Else Structure...............................................................................25
Overview...................................................................................................25
IF Command.............................................................................................25
THEN Commands and ELSE Commands...............................................26

Example............................................................................................................26
Example............................................................................................................26

Graphic Commands.......................................................................................27
Drawing Simple Shapes...............................................................................27

PLOT Command.......................................................................................27
Example............................................................................................................27

LINE Command........................................................................................27
Example............................................................................................................27

SET LINE Command................................................................................28
BOX Command........................................................................................29

Example............................................................................................................29
CIRCLE Command...................................................................................29
TEXT Command.......................................................................................29

Example............................................................................................................29
Extended Graphics.......................................................................................30

BAR command.........................................................................................30
ELLIPSE command..................................................................................30
ARC command.........................................................................................30
PIE command...........................................................................................30
POLYLINE command...............................................................................31

Example............................................................................................................31
POLYGON command...............................................................................31

Advanced Graphics......................................................................................32
GFXLOCATE command...........................................................................32
PAINT command......................................................................................32
CLIP command.........................................................................................32

Graphic Functions.........................................................................................33
Location Functions.......................................................................................33

GRLocateX Function................................................................................33
GRLocateY Function................................................................................33

Screen colour commands.............................................................................34
Colour commands, affecting graphics.........................................................34

INK Command..........................................................................................34



© 1998 – 1999 ProSoft Technologies

BRUSH Command...................................................................................34
Display Resolution commands & Functions..............................................35

Changing Resolution....................................................................................35
RESOLUTION Command  Syntax: RESOLUTION <width>X<height>.......35

Example............................................................................................................35
Creating and destroying screens.................................................................36

SCREEN OPEN Command......................................................................36
SCREEN OPEN Command......................................................................36
SCREEN CLONE Command...................................................................36

Managing Screens.......................................................................................37
SCREEN CURRENT Command..............................................................37
SCREEN TO FRONT Command.............................................................37
SCREEN TO BACK Command................................................................37

Screen manipulation....................................................................................38
SCREEN OFFSET Command..................................................................38
SCREEN RESIZE Command...................................................................38

Screen update and setting commands........................................................39
SET AUTO UPDATE Command..............................................................39

Example............................................................................................................39
DISPLAY UPDATE Command.................................................................39

Example............................................................................................................39
CLS Command.........................................................................................40

Example............................................................................................................40
Mathematical commands..............................................................................41

Different types of results..............................................................................41
Overview...................................................................................................41
DEGREE Command.................................................................................41
RADIAN Command..................................................................................41

Number manipulation commands................................................................42
Overview...................................................................................................42
INC Command..........................................................................................42
DEC Command........................................................................................42
ADD Command........................................................................................42
SUB Command.........................................................................................43
RANDOMIZE Command..........................................................................43

Mathematical functions.................................................................................44
Simple functions...........................................................................................44

Overview...................................................................................................44
ABS Function............................................................................................44
INT Function.............................................................................................44
PI Function...............................................................................................44

Extended mathematical functions................................................................45
MAX Function...........................................................................................45
MIN Function............................................................................................45
SGN Function...........................................................................................45
SQR Function...........................................................................................45



© 1998 – 1999 ProSoft Technologies

EXP Function............................................................................................45
LOG Function...........................................................................................46
LN Function..............................................................................................46

Trigonometry functions.................................................................................47
COS Function (Cosine)............................................................................47
SIN Function (Sine)..................................................................................47
TAN Function (Tangent)...........................................................................47
ACOS Function (Arc Cosine)...................................................................47
ASIN Function (Arc Sine).........................................................................47
ATAN Function (Arc Tangent)..................................................................47
HCOS Function (Hyperbolic Cosine).......................................................48
HSIN Function (Hyperbolic Sine).............................................................48
HTAN Function (Arc Tangent)..................................................................48

String Functions............................................................................................49
Simple Functions..........................................................................................49

LEFT Function..........................................................................................49
RIGHT Function........................................................................................49
MID Function............................................................................................49
INSTR Function........................................................................................49

Case conversion..........................................................................................50
UPPERCASE Function.............................................................................50
LOWERCASE Function............................................................................50

Manipulating Strings.....................................................................................51
STRING Function.....................................................................................51

Example............................................................................................................51
SPACE Function.......................................................................................51

Example............................................................................................................51
FLIP Function...........................................................................................52

Example............................................................................................................52
REPEAT Function....................................................................................52

Example............................................................................................................52
CHR Function...........................................................................................52

Example............................................................................................................52
ASC Function...........................................................................................52
LEN Function............................................................................................53

Text commands and functions.....................................................................54
Overview......................................................................................................54

What are text commands and functions?.................................................54
Scope of commands and functions..........................................................54

Font Manipulation Commands.....................................................................55
Overview......................................................................................................55

FONT Command......................................................................................55
FONT SIZE Command.............................................................................55
FONT NAME Command...........................................................................55

Example............................................................................................................55
FONT STYLE Command..........................................................................56



© 1998 – 1999 ProSoft Technologies

Example............................................................................................................56
FONT COLOR Command........................................................................56

Example............................................................................................................56
FONT DMODE Command........................................................................57

Direct Font Manipulation Commands..........................................................58
Overview......................................................................................................58

BOLD Command......................................................................................58
ITALICS Command..................................................................................58
UNDER Command...................................................................................58
STRIKE Command...................................................................................58
INVERSE Command................................................................................59
SHADE Command....................................................................................59

Text Commands.............................................................................................60
Overview......................................................................................................60

CENTER Command.................................................................................60
Example............................................................................................................60

PRINT Command.....................................................................................60
? Command..............................................................................................60

Overview......................................................................................................61
SET TEXT GRID Command.....................................................................61

Text Grid - Navigation Commands...............................................................62
HOME Command.....................................................................................62
LOCATE Command..................................................................................62
MEMORIZE Command.............................................................................62
REMEMBER Command...........................................................................62
CMOVE Command...................................................................................63
CUP Command........................................................................................63
CDOWN Command..................................................................................63
CLEFT Command.....................................................................................63
CRIGHT Command..................................................................................63

Text Grid - Scrolling.....................................................................................64
HSCROLL Command...............................................................................64
VSCROLL Command...............................................................................64

Text Preformatting - Commands..................................................................65
SET TEXT PREFORMATTING Command..............................................65
SET TAB Command.................................................................................65
PreSTYLE Function..................................................................................66

Example............................................................................................................66
Escape Sequence Generated.............................................................................66

PreINK Function.......................................................................................67
Example............................................................................................................67
Escape Sequence Generated.............................................................................67

PreMOVE Function...................................................................................68
Example............................................................................................................68
Escape Sequence Generated.............................................................................68

PreLOCATE Function...............................................................................69



© 1998 – 1999 ProSoft Technologies

Example............................................................................................................69
Escape Sequence Generated.............................................................................69

TAB Function............................................................................................69
Example............................................................................................................69
Escape Sequence Generated.............................................................................69

PreCDown Function.................................................................................70
PreCUP Function......................................................................................70
PreCLeft Function.....................................................................................70
PreCRight Function..................................................................................70

Example............................................................................................................70
Escape Sequence Generated.............................................................................70

Text grid - Navigation functions...................................................................71
Date Time commands and functions...........................................................72

Overview......................................................................................................72
What are date and time commands / functions?......................................72

Date Commands and Functions...................................................................73
Overview......................................................................................................73

CURRENTDATE Function.......................................................................73
DATETOSTR Function.............................................................................73
STRTODATE Function.............................................................................73

Time Commands and Functions..................................................................74
Overview......................................................................................................74

CURRENTTIME Function........................................................................74
TIMETOSTR Function..............................................................................74
STRTOTIME Function..............................................................................74

Date & Time Misc. Commands and Functions...........................................75
FORMATDATETIME Function.................................................................75

Input : Keyboard Commands And Functions.............................................76
Overview......................................................................................................76

WAIT KEY Command...............................................................................76
INKEY Function........................................................................................76
KEYDOWN Function................................................................................76
KEYSHIFT Function.................................................................................77
KEYCTRL Function..................................................................................77
KEYALT Function.....................................................................................77

Example............................................................................................................77
User defined procedure and functions.......................................................78

Overview......................................................................................................78
Functions......................................................................................................78
Procedures...................................................................................................79

PROCEDURE Command.........................................................................79
Example............................................................................................................79

ENDPROC Command..............................................................................79
CALL Command.......................................................................................80
EXITPROC Command..............................................................................80

Debugging Commands & Functions...........................................................81



© 1998 – 1999 ProSoft Technologies

Immedatate Mode..........................................................................................82
What is Immedaite Mode?...........................................................................82

Commands and functions special to Immediate Mode............................83
LINES Command......................................................................................83
QUIT Command.......................................................................................83
STOP Command......................................................................................83

Run-time error messages............................................................................84
Overview...................................................................................................84
Error Listing..............................................................................................84



© 1998 – 1999 ProSoft Technologies

Introduction
Before you begin..

GamesBasic is still in Alpha – This document is also in Alpha, it does not fully 
explain all commands, errors. Omission >DO< exist within this documentation. If you
do not wish to use a alpha program, destroy all copies of this program and 
documentation. 

If you wish to locate a new version of this documentation please download the latest 
version of GamesBasic via www.GamesBasic.com. 

Enjoy GamesBasic – I enjoying making it, and hope you enjoy using it!!

James

http://www.GamesBasic.com/


© 1998 – 1999 ProSoft Technologies

Copyright and ownership
Overview

GamesBasic is a privately owned and copyrighted computer program / application. 
Copyright, ownership and titleship belong solely to James Hunter, Lisburn, Northern 
Ireland. James Hunter also owns the idea on which GamesBasic has been created, i.e. 
a programming language which allows easy access to computer hardware. No 
derivative work should be attempted or carried out. ProSoft Technologies currently 
holds the licence to distribute GamesBasic.

Warranty and Guarantee

GamesBasic and all supplied materials come with no warranty or guarantee of any 
kind. You have agreed with all legal material shipped / supplied with GamesBasic and
understand that you use this software / documentation entirely at your own risk.
James Hunter, ProSoft Technologies or its agents cannot be help responsible for any 
problems, damage, loss, debt, legal problems, etc. 

Further reading

Full terms and conditions which apply to GamesBasic are freely available from 
ProSoft Technologies, please apply in writing to: 

Project Management
ProSoft House
78 Armagh Road
Trandragee
Co. Armagh
BT62 2HS. 



© 1998 – 1999 ProSoft Technologies

GamesBasic - Interface
The GamesBasic Interface – IDE.

GamesBasic comes with a powerful IDE which will require a separate user 
documentation, and when I have the time I will get one done :)

For now you must navigate it on your own, unless some of you amazing users can 
write a good document!!



© 1998 – 1999 ProSoft Technologies

GamesBasic – Features and Bugs
GamesBasic Features

GamesBasic has a impressive list of features, listed below are the ones I can 
remember :)

 RAD (Rapid Applications Development) system
 Support for ANSI basic syntax
 Simple to use interface (IDE)
 Support for multiple screen effects
 Timers
 Keyboard input
 Sprite (basic)
 User defined procedures
 Comprehensive maths and string handling functions
 Support for WAD-Style projects
 Variables have no type – they are covered automatically
 Support for various loops
 Full graphics commands
 Multiple screens
 Date and Time Functions
 Text Grids
 Immediate Mode
 Screen FX (i.e. Fades)
 Continuous development cycle
 FREE!

GamesBasic Bugs

As with all programming language there are bugs, some of these bugs may never 
affect you (hopefully) 

 GamesBasic does not syntax check (validate) any code before its ran – so if you 
enter code which is wrong then there is a chance GamesBasic may crash or abort 
running. Hopefully, you should receive a RTE (run-time error) but some 
commands expect to receive validated commands (for speed).

 Its not fast enough – Yes, GamesBasic is no where near fast enough for even my 
standards, and there is one simple reason why this is. Its not optimised. 
Optimising a program (such as GamesBasic) makes it run faster, a lot faster. 
However it takes a lot of time, and unless you have the application running 100% 
correctly you can introduce new bugs and delays in releases. 



© 1998 – 1999 ProSoft Technologies

Expressions
An overview of expressions

What is an expression?

An expression is a number of values, linked together by operators to create a bigger 
(more powerful) value.

A Simple Expression

Take the following example ‘100 + 100’, this contains two value and an operator. The
operator in this case is a ‘+’ for addition, and the result would be 200. 
GamesBasic fully supports these standard expressions, as well as ones containing 
brackets for parenthesis, EG. ‘(100 + ( 5 * 2 ) + 5)’

Complex Expressions

It also supports variables, see later on how to declare and use them. A expression 
containing a variable may look like the following.. (100 + Counter + (5 * 3) )
GamesBasic has a number of built in functions (and you can define your own), so its 
simply a mater of including the function name and any parameters its requires. EG. 
(4100 + Average(100,100,200) + Counter) – This shows a function (Average) with 3 
parameters, a value (4100) and a variables (Counter), all inside one expression.

GamesBasic understands and performs the rules of precedence correctly.



© 1998 – 1999 ProSoft Technologies

Expression Operators

Only mathematical expressions have been used, such as add (+) or divide (/). 
GamesBasic supports a large number of operators and this include :

 AND – Logical AND, both values passed to an AND must be either True or False.
I.e. The expression ‘Finished = CouldBe And True’ – Could require CouldBe to 
be a variable containing the value True or False. Logical AND will return true if 
both sides of the statement are true.

 OR – Logical OR, uses the same syntax of AND. But returns true as long as one 
of  the values passed is true.

 NOT – Logical NOT, this inverts the contents of the passed value (must be 
Boolean true / false value). A logical NOT requires a simple expression, which 
must be enclosed in a set of brackets. I.e. ‘Let Finished = Not(StillGoing)’ 

 < (Less than) – Return true is the value on its left is less than the value on its right 
(I.e. 2 < 5 = True)

 > (Greater Than) – Returns true is the value on its left is greater than the value on 
its right (I.e. 2 < 5 = False, 5 > 2 = True)

 <> (Not Equal To) – Returns true is the value on the left isn’t the same as the 
value on its right.

 >= (Greater than or Equal to) – Returns true if the value on the left is greater than 
or equal to the number of the right (I.e. “5 >= 5” is True, and “10 >= 5” is also 
true.

 <= (Less than or Equal to) – Returns true is the value on the left is less than or 
equal to the value on the right.

 = (Equal to) – Returns true if the both values are the same.



© 1998 – 1999 ProSoft Technologies

Variables
An overview of variables

What is an Variables

A variable is a holding place for information within you program, as the name 
suggests the value is ‘variable’. GamesBasic supports a wide range of variable types, 
which are automatically converted between types (such as integer, floating point, 
string, etc).



© 1998 – 1999 ProSoft Technologies

Variables
Declaring variables

LET Command

Syntax : LET <Variable Name> = <Expression>

The LET command allows you to create a variable at run-time, using the expression 
provided. The Variable name can be up to 255 characters long, contain alphanumeric 
values (however, the first character MUST be a alphabetic character) and a few 
special symbols (such as ‘_’ , ‘$’ , ‘!’, ‘#’)

Example (Simple Expression)

LET CostPerHour = 5
LET HoursPerDay = 8
LET DailyWage = CostPerHour * HoursPerDay

Example (Complex Expression)

LET CostPerHour = (CostPerHour * HoursPerDay) / Insurance + (15 * 10)
LET AverageCost = Average(JohnsPay, AlansPay, JamesPay, RuthsPay) ;

Note : The last example, calls a Function named ‘Average’, which takes multiple 
values and works out the numeric average!



© 1998 – 1999 ProSoft Technologies

Variable Scope

The scope of a variable is who ‘visible’ a variable is to other parts of a program. Two 
different types of variable scope exist : Local and Global.
Local variables are those which can only be seen by commands inside a procedure, or 
from other procedures called from the procedure which declared the variable. When 
you enter a procedure and create a number of variables these exist locally, and can be 
used inside the procedure. When you exit the procedure, all local variables declared 
inside it are destroyed.
Global variables are the opposite, these exist no mater where you are within the 
program and are usually declared in the main block, outside procedures. However, it 
is possible to turn local variables into global variables (See Global command). Global 
variables are never destroyed and exist until the program is terminated.

GLOBAL Command

Syntax : GLOBAL <Variable>,<Variable>,<Variable>,….

The Global command turns a list of variables (separated by semicolons) from local 
into global variables. If you variables does not exist locally, GamesBasic will create 
the variable as a zero valued integer.
Globally declaring a variable makes it visible to all sections of your code, whether 
inside procedures, functions or in the main code block.
Note : GamesBasic will not destroy the contents of any variable converted to a global 
variable.
 

LOCAL Command

Syntax : LOCAL <Variable>,<Variable>,<Variable>,….

The Local command provides a way of declaring variables as local to a procedure or 
function. Once you have declared a variable as Local it will exist only while 
execution is within that procedure, or any other procedures it calls. Once a 
ENDPROC or EXITPROC is executed, all local variables are destroyed and there 
contents lost.
Global variables can be turned into local variables, am will be destroyed at the end of 
a procedures / functions execution.
Note : GamesBasic will not destroy the contents of any variable converted to a local 
variable.



© 1998 – 1999 ProSoft Technologies

Control Structures
Overview of control structures

What is a controls structure

A control structure is a command or number of commands, such affect the running of 
program. Listed below are the most common types of control structures:

 Loops, these structures allow a number of commands to be repeated until a 
condition is meet.

 Batch Statements, these structures allow the movement around a program 
depending on conditions.

 Exceptions, these structures all the processing of an error procedure when 
something goes wrong with your program.



© 1998 – 1999 ProSoft Technologies

Control Structures - Loops
Do..Loop Structure

Do Command

Syntax : DO

The DO command is used to show the starting point of an unconditional loop. This 
sort of loop will repeat forever, never stopping due to a condition. However using the 
Break Loop command, you can break the loop and continue after the ending Loop 
command. 
Note : Every DO must be accompanied by a terminating Loop command, the system 
will return an error if you have too many/little DO’s or too many/little Loop’s.

Loop Command

Syntax : LOOP

The LOOP command, terminates a loop started with a DO command, and is the last 
instruction executed before the loop restarts at the command after the matching DO 
command. See Break Loop command for more information.



© 1998 – 1999 ProSoft Technologies

Repeat..Until Structure

Repeat Command

Syntax : Repeat

The Repeat command is used to initiate a Repeat..Until loop, this type of loop is used 
to perform a number of loops until a desired result is achieved. 

Until Command

Syntax : Until <Condition>

The Until command is used to end a Repeat..Until loop by stating the point at which 
the loop will stop. This <condition> will be tested at the end of each run down the 
code within the Repeat..Until structure, and until it is TRUE to loop will continue to 
run.

Example

Let Counter = 10
Repeat
     Let Counter = Counter + 1
     Print “The Counter Is “ + Counter
Until Counter = 10

The above sample code will run until the counter become 10.



© 1998 – 1999 ProSoft Technologies

While..Wend Structure

While Command

Syntax : While <Condition>

The While command initiates the While..Wend loop and also state the point at which 
the loop will complete. While the condition supplied has NOT been met, i.e. it is not 
true the loop will continue to operate. 

Wend Command

Syntax : Wend

The Wend command is used to show the ending point of a While..Wend loop. When a
Wend command is executed, GamesBasic will jump back to its While command and 
test the condition. 

Example

Let Counter = 10
While Counter < 10
     Let Counter = Counter + 1
     Print “The Counter Is “ + Counter
Wend

The above sample code will run until the counter become 10 – Note that “Counter < 
10” is used, because the While..Wend loop executes until the condition becomes True.



© 1998 – 1999 ProSoft Technologies

Control Structures – Loops Special 
Commands
BREAK LOOP Command

Syntax : BREAK LOOP

The break command has many features, however its importance in the stopping of 
loops is important. Using Break Loop you can stop the ‘current’ loop you are inside, 
and continue execution after the terminating command (E.g. For a Do..Loop, 
execution continues after the Loop Command.).

 



© 1998 – 1999 ProSoft Technologies

Control Structures - Jumps
Goto Structure

GOTO Command

Syntax : GOTO <Label>

The Goto command is used to jump to a label declared elsewhere in your code. This 
jump is one-way and there is no command to directly return you to the command after
the Goto command (See Gosub..Return structure).
The label is declared by placing the label name as the first word on a line, followed by
a single colon. For example “Label:” or “JumpHere:” GamesBasic supports both 
forward and backwards jumps to labels, but will search forwards jumps first (so for 
extra speed keep Goto labels in front of Goto commands).

You can only jump to a label in the same ‘block’. A block is a procedure or the main 
source code block. This means you cannot jump into a procedure, out of a procedure, 
into loops, out of loops or into control structures (I.e. If..then..else commands). 
GamesBasic will refuse to make such jumps, you can however jump over these 
commands to a label. Just a long as the label is not inside any of these.



© 1998 – 1999 ProSoft Technologies

Gosub..Return Structure

GOSUB Command

Syntax : GOSUB <Label>

The Gosub command is used to jump to a subroutine identified using a Label. Gosub 
is similar to Goto in the fact it performs a straight jump to the label. However, unlike 
a Goto command you must “Return” back from a sub-routine using the Return 
command. 
For every Gosub command in your code, you should have a equal Return command, 
failure to do this may result in overflowing the Gosub stack.

RETURN Command

Syntax : RETURN

You must always match a Gosub command with a equal Return command. When 
GamesBasic encounters a Return it will jump back to the next command after the 
original Gosub which called the sub-routine.

Example

….
Gosub SayHello
Print “Good Bye”
End

SayHello:
Print “Hello World!”
Return



© 1998 – 1999 ProSoft Technologies

IF..Then..Else Structure

Overview

The If..Then..Else structure is used to make decisions within your code, and allow 
you to take a different path through it. This control structure can be used to make a 
choice between drawing a circle or a square, making a sprite walk or run, etc.

IF Command

Syntax : IF <Condition>

The If command is used to start the If..Then..Else structure and requires a condition. 
This condition is tested to see if it returns True Or False, depending on that result 
either the Then or Else commands are ran.

If a condition returned True, GamesBasic will run any statements after the Then 
command.
If the condition returns False, and the Else statement exists, GamesBasic will run the 
code after the Else command.



© 1998 – 1999 ProSoft Technologies

THEN Commands and ELSE Commands

Syntax : THEN <Statements> 
Syntax : ELSE <statements>

The Then / Else statements are executed when a condition returns True or False. 
Depending on the format of the IF command either 1 or more statements will be 
executed. The If..Then..Else structure can have 2 very different formats.

Format One

IF <condition> THEN <statement> ELSE <statement>

Format Two

2) IF <condition> THEN
      <statements>
     ENDIF | [ELSE 
       <statements>
     ENDIF]

Format One is a single line If..Then..Else statement and is used when you have one 1 
command that you wish executed (depending on the result). 

Example

If A = 1 Then B = 1 Else B = 2

Format Two is used to allow multiple statements after the Then and Else commands. 
If you use format number two, make sure you include the ENDIF statement to let 
GamesBasic know the end of the THEN and ELSE statements. 

Example

If A = 1 Then
    B = 1 
    C = 1
  Else
     B = 2
EndIf



© 1998 – 1999 ProSoft Technologies

Graphic Commands
Drawing Simple Shapes

PLOT Command

Syntax : PLOT  [SCREEN <no><,>] <x>,<y>[,<colour>]

The plot commands allows the user to plot a single pixel of information onto the 
display, they provide the command with the desired X and Y locations, and optionally
a colour palette index (a number between 0 and 255). This command, like most other 
graphic commands supports the SCREEN parameter, which allows you to draw 
directly to screens which are not the current screen.

Example

PLOT 100,100,2
PLOT SCREEN 0,100,100,2

LINE Command

Syntax 1 : LINE [SCREEN <no><,>] <x1>,<y1> to <x2>,<y2>
Syntax 2 : LINE [SCREEN <no><,>] to <x>,<y>

The line command allows the drawing on a single pixel width line from a starting 
point to an end point. The line command must always be supplied with a end point 
(X,Y), however it supports two different ways of supplying the start position. After all
drawing operation the ‘graphics cursor’ is usually located where the last operation 
ended. Using the LINE TO version (Syntax 2) of the command, you can draw from 
that last point to a supplied end point. If however, you want to draw a line somewhere
else use the fully syntax 1 of the command. 
This command contains no optional colour parameter, the line colour is set using the 
INK command.

Example 

Line 100,100 To 200,200
Line To 200,200



© 1998 – 1999 ProSoft Technologies

SET LINE Command

Syntax 1 : SET LINE <value>

The set command used with the suffix LINE, allow you to set the style for drawing 
modes, such as dashed, dotted, etc. The <value> must be between 0 and 5.
Note : DirectX does not support this command, as yet, but its supported in 
GamesBasic for future use.



© 1998 – 1999 ProSoft Technologies

BOX Command

Syntax : BOX [SCREEN <no><,>] <x1>,<y1> to <x2>,<y2>

The Box command provides a way of drawing square or rectangle shapes directly 
onto any screens. The Box command requires two points, the upper left corner 
<x1>,<y1> and the bottom right corner <x2> and <y2>. Using these points 
GamesBasic will draw on the current screen, a box using the co-ordinates supplied. 
Adding the optional SCREEN parameter allows you to specify a screen in which you 
want to draw the box. 
The box colour is controlled via the INK command, for a filled rectangle see the Bar 
command for more information.

Example

Box 0,0 To 200,300
Box Screen 10,10,10 To 20,200

CIRCLE Command

Syntax : CIRCLE [SCREEN <no><,>] <x>,<y>,<radius>

By use of the Circle command users can draw perfect circles, only by supplying the 
centre points of the circle [<x> ,<y>] and the radius (in pixels). Circles are hallow, 
and are drawn in the current ink colour. To fill a circle, use the PAINT command.

TEXT Command

Syntax : TEXT [SCREEN <no><,>]<x1>,<y1>,<expression>

The text command allows the user to quickly provide text information on screen. The 
X and Y co-ordinates state the upper left corner for the text, while the usage of the 
expression allows text, variables and functions to be used.
For more information on text commands, see the text oriented commands under the 
TEXT section.

Example 

Text 100,100,”Hello World”
Text Screen 1,200,200,”The counter is currently” + Counter
Text X_Location, Y_Location, “You are now at “ + X_Location + “,” + Y_Location



© 1998 – 1999 ProSoft Technologies

Extended Graphics

BAR command

Syntax : BAR [SCREEN <no><,>] <x1>,<y1> to <x2>,<y2>

The BAR command is an extension of the standard Box command for drawing 
rectangles or squares. This variation fills the box with the current Brush colour, (see 
BRUSH command for more information), whilst drawing the outline in the Ink Colour
(see INK command).

ELLIPSE command

Syntax : ELLIPSE [SCREEN <no><,>] <x>,<y>,<radius1>,<radus2>

This command is similar to the Circle command, except using an extra radius 
parameter you can draw ellipse’s. See the Circle command for more information.

ARC command

Syntax : ARC [SCREEN <no><,>]<x1>,<y1>,<x2>,<y2>,<x3>,<y3>,<x4>,<y4>

Used to draw an arc, use this command. The following description of parameter is 
technically strong :  The arc traverses the perimeter of an ellipse that is bounded by 
the points (X1,Y1) and (X2,Y2). The arc is drawn following the perimeter of the 
ellipse, counter clockwise, from the starting point to the ending point. The starting 
point is defined by the intersection of the ellipse and a line defined by the centre of 
the ellipse and (X3,Y3). The ending point is defined by the intersection of the ellipse 
and a line defined by the centre of the ellipse and (X4, Y4).

PIE command

Syntax : PIE [SCREEN <no><,>]<x1>,<y1>,<x2>,<y2>,<x3>,<y3>,<x4>,<y4>

The pie command draw a pie shaped wedge, and is similar to the arc command in that 
it draws an arc. However at the end of a arc, it will draw lines from the last point to 
the centre co-ordinates of the arc and then to the start of the arc. Thus, a pie shaped 
wedge. See Arc command for more details..



© 1998 – 1999 ProSoft Technologies

POLYLINE command

Syntax 1 : POLYLINE [SCREEN <no><,>] <x1>,<y1> (To <x2>,<y2>)
Syntax 2 : POLYLINE [SCREEN <no><,>] (To <x2>,<y2>)

The polyline command is used to draw a number of lines, joined to each other. This 
command supports a large number of <x> and <y> values, each value state another 
point in the line. Syntax 1 is used when you want to give the starting point, however if
you want to start from the current graphics cursor position use Syntax 2.

Example

Polyline 100,100 To 200,200 To 300,300 To 150,150
Polyline Screen 0,200,100 To 200,200
Polyline To 500,500 To 300,200 To 100,100
Polyline Screen 1,To 400,400

POLYGON command

Syntax 1 : POLYGON [SCREEN <no><,>] <x1>,<y1> (To <x2>,<y2>)
Syntax 2 : POLYGON [SCREEN <no><,>] (To <x2>,<y2>)

The polygon command is identical to the standard polyline command, however it will 
draw a line from the end co-ordinates back to the first point, and then fill in the 
enclosed shape using the brush colour.



© 1998 – 1999 ProSoft Technologies

Advanced Graphics

GFXLOCATE command

Syntax : [SCREEN <no><,>] <x>,<y>

The Graphics Locate command or GFXLocate, allows you to set the current position 
of the graphics cursor at run time. By supplying the new <x> and <y> values, and 
optionally a screen, GFXLocate will move the graphics cursor.

PAINT command

Syntax : PAINT [SCREEN <no><,>]<x1>,<y1>,<colour no.>

The paint command is used to flood fill any closed objects, such as a rectangle, circle 
or polygon. Using the <x> and <y> co-ordinates you pass this instruction the centre 
location for the flood fill to begin, the colour no is a palette index value.
Bug: There is a problem where this command paints in black or white, with no colour.

CLIP command

Syntax : CLIP [SCREEN <no><,>] <x1>,<y1> To <x2>,<y2>

The clip command is not currently supported by graphics commands, however it 
should ‘clip’ any drawing operations within the boundaries of a rectangle specified by
x1,y1 and x2,y2. Calling this command currently will waste CPU cycles.



© 1998 – 1999 ProSoft Technologies

Graphic Functions
Location Functions

GRLocateX Function

Syntax : GRLocateX

This command returns an integer value presenting the X location of the graphics 
cursor on the current screen. 

GRLocateY Function

Syntax : GRLocateY

This command returns an integer value presenting the Y location of the graphics 
cursor on the current screen. 



© 1998 – 1999 ProSoft Technologies

Screen colour commands
Colour commands, affecting graphics

INK Command

Syntax : INK [SCREEN <no><,>]<colour no.>

The Ink command is used to set the colour of the current ‘ink’ used for drawing 
operations. The ‘ink’ colour is used in the drawing of all hallow shapes, whilst it is 
used in the outline of all solid or filled shapes. The colour parameter is a ‘Palette 
Index’ value, between 0 and 255 (due to the 256 colour display). The palette can be 
changed by using the Palette command. See the Flash command for information on 
cycling the values of a colour palette entry.

BRUSH Command

Syntax : BRUSH [SCREEN <no><,>]<colour no.>

Similar to the Ink command, this command allows the setting of the current ‘brush’ 
used for drawing operations. The ‘brush’ is used to draw the inside of filled shapes. 
Please see the Ink command for a more detailed explanation.



© 1998 – 1999 ProSoft Technologies

Display Resolution commands & 
Functions

Changing Resolution 

GamesBasic supports the changing of resolutions to a valid resolution. However, 
there are no functions yet which return if a resolution can be achieved, these will 
follow shortly.

RESOLUTION Command

Syntax: RESOLUTION <width>X<height>

By calling the Resolution command you can change the current resolution of the 
application. Standard values include 320x240, 640x480, 800x600 and 1024x768. 

Example

Resolution 800x600



© 1998 – 1999 ProSoft Technologies

Screen commands

Creating and destroying screens

SCREEN OPEN Command

Syntax : SCREEN OPEN <screen no>,<width>,<height>

To open a screen other than the default screen (screen 0), use the Screen Open 
command to create a new screen. You supply, to the command, the number of the new
screen (there is currently a limit of 16 screens, 0 -> 15), and the width and height 
values. GamesBasic will create the screen, and display it in the upper left hand side of
the display. Screens can have independent widths and heights, but they do share the 
current resolution and colour palette.
Once you have opened a new screen, GamesBasic assumes it to be the ‘current 
screen’, and all drawing operations without the optional SCREEN command will 
draw to it. See the SCREEN CURRENT command to change this.

SCREEN OPEN Command

Syntax : SCREEN CLOSE [<screen no>]

Use this command is close the current screen (if no screen number is given) or using 
the optional parameter a selectable screen. When you close a screen, GamesBasic will
assign the ‘current screen’ to the screen behind the closed one.

SCREEN CLONE Command

Syntax : SCREEN CLONE [<screen no>]

The clone command allows you to ‘clone’ the current screen and make an exact copy 
of it. The copy is then assigned the next free screen number, or the number optionally 
supplied with the command. A cloned screen will act independently of the current 
screen, and behaves as a new screen.
Consideration : The graphics present on the old screen are not cloned onto the new 
screen, this will however be supported before final release.



© 1998 – 1999 ProSoft Technologies

Managing Screens

SCREEN CURRENT Command

Syntax : SCREEN CURRENT <screen no>

To change the 'current' screen, use this command supplied with a screen number. This
command is useful when you do not want to place the keyword SCREEN in front of 
your graphics commands.

SCREEN TO FRONT Command

Syntax : SCREEN TO FRONT [<screen no>]

As screens are created or cloned, they become the current screen and appear in front 
of any other screens. If however you want to work on a screen that is behind other 
screens, you must bring it to the front so its can be correctly seen. Using the SCREEN
TO FRONT command allows you to bring the 'current' screen to the front (if you 
supply no optional screen number), or if you do the selected screen. 

Note : Once a screen has been moved to the front, it is automatically made the 
‘current screen’.

SCREEN TO BACK Command

Syntax : SCREEN TO BACK [<screen no>]

The SCREEN TO BACK works in a identical way, except moves the screen to the 
back of all the others. 

Note : The screen which has been moved to the back, becomes the ‘current screen’. 
The screen now at the front is NOT the current screen.



© 1998 – 1999 ProSoft Technologies

Screen manipulation

SCREEN OFFSET Command

Syntax : SCREEN OFFSET <screen no>,<x offset>,<y offset>

The command allows you to position a screen relative to the upper left corner of a 
screen (co-ordinates 0,0). By giving an offset from this point, you can position a 
screen anywhere in space - even off or half-on the computer's display. The usage of 
negative x and y numbers is allowed, this allows right to left, or down to up 
movement of a screen.

SCREEN RESIZE Command

Syntax :SCREEN RESIZE <screen no>,<width>,<height>

After you have initially created a screen, you may wish to resize it during its 
‘lifetime’. By supplying the screen number, along with a new width and height value -
GamesBasic will resize the selected screen.
Consideration : GamesBasic does not attempt to remember what was in the screen, 
and will erase its to the standard screen background colour - this will change in later 
releases.



© 1998 – 1999 ProSoft Technologies

Screen update and setting commands

SET AUTO UPDATE Command

Syntax : SET [AUTO UPDATE <on>/<off>]

GamesBasic updates the screen automatically every 20ms (or 50 times a second), 
allowing for smooth graphics and no flickering. If you don’t want GamesBasic to 
update the display at this regular interval, you need to turn the system off.  Using the 
SET AUTO UPDATE command, you can specify whether GamesBasic automatically
updates the display, or whether you have to do it manually. To manually update the 
display at the required interval, called the Display Update Command.

Example

Set AutoUpdate off
.... Do some instructions ...
Display Update

DISPLAY UPDATE Command

Syntax : DISPLAY [UPDATE <VB Wait>]

When AUTO UPDATE is off (using SET command), the display will not be updated 
by Games Basic automatically. You must call the DISPLAY UPDATE command to 
update the contents of the current screen. 
The optional parameters <VB Wait> is used to make GamesBasic wait until a vertical
blank before updating the display. Supply either ‘True’ or ‘False’, if no option is 
supplied ‘False’ is assumed. Normally you do no have to wait for the vertical blank, 
however if you experience flickering when calling this command, see <VB Wait> to 
True.

Example

Display Update
Display Update True



© 1998 – 1999 ProSoft Technologies

CLS Command

Syntax : CLS [SCREEN <no>[<,>]][<colour no>]

This command clears the current screen (if no optional screen is given) with the 
current Brush colour (if no optional colour palette index is given)

Example

CLS - Clears current screen to default colour
CLS SCREEN 1 - Clears screen 1 to default colour
CLS SCREEN 1,124 - Clears screen 1 to colour 124
CLS 124 - Clears current screen to colour 124



© 1998 – 1999 ProSoft Technologies

Mathematical commands
Different types of results

Overview

Most mathematical functions, such as Cos and Sin, can return results in different 
format i.e. Cosine can return its result in degree’s or radian’s. Use the commands 
listed here to change the results returned by a mathematical functions.

DEGREE Command

Syntax : DEGREE

The Degree command sets the type of result returned by functions which can return 
either degree of radian values. Cosine and Sine are prime example. By calling this 
command, GamesBasic will return the results in a degree’s.

RADIAN Command

Syntax : RADIAN

Similar to the Degree command, Radian is used to tell GamesBasic to return 
Radian’s.



© 1998 – 1999 ProSoft Technologies

Number manipulation commands

Overview

This section details the manipulation of numbers. Most of these commands can be 
used as substitutes for mathematical expressions, i.e. ‘A =A + 1’, can be performed 
35% faster by calling the ‘Inc (A)’ command. As shown, the main reason for using 
these commands is speed, however their use is limited and sometimes required proper 
setting-up (i.e. variables must exist).

INC Command

Syntax : INC <Variable>

The Inc (increment) command allows you to perform fast integer based addition. Inc 
performs the same function as ‘Variable = Variable + 1’, but almost 35% faster. 
Variables must already be declared and/or used, because Inc will not create a 
undeclared variable.

DEC Command

Syntax : DEC <Variable>

The Dec (decrement) command is the reverse of the Inc command, taking 1 (one) 
away from a supplied variable.  Again, make sure its declared before calling this 
command.

ADD Command

Syntax : ADD <Variable>,<expression>[,<base> to <top>]

The Add command performs a fast addition to a variable. The variable must exist 
before you call this command, and the expression must resolve to a valid number. The
<base> and <top> optional parameters are used to allow a boundary for the addition. 
Using <base> and <top> have the same purpose as calling  ‘IF VARIABLE < BASE 
THEN VARIABLE=TOP ; IF VARIABLE > TOP THEN VARIABLE=BASE’.



© 1998 – 1999 ProSoft Technologies

SUB Command

Syntax : SUB <Variable>,<expression>[,<base> to <top>]

The Sub command is used to subtract an expression from a variable, this command is 
much faster than using Variable = Variable – Expression, and has the added 
advantage of the <base> and <top> parameters – See the Add command for more 
details.

RANDOMIZE Command

Syntax : RANDOMIZE <seed>

The Randomize command initalizes the built-in random number generator with a 
random value (obtained from the system clock). By using the optional <seed> 
expression you can repetitively generate a specific sequence of random numbers. This
is useful for applications that deal with data simulations. 
However, it is not recommended that you use this command to generate a set of 
random numbers for data encryption or similar purposes that require reproducible 
sequences of pseudo-random numbers. The implementation of the Random function 
(which returns the random number’s) may change between revisions of Games Basic.



© 1998 – 1999 ProSoft Technologies

Mathematical functions
Simple functions

Overview

Mathematical functions are an important part of any computer language, and 
GamesBasic is not without its impressive list of functions. Please remember, for 
applications which require high-speed execution (such as games or demos) 
mathematical functions do carry a high CPU load!

ABS Function

Syntax : Result = ABS (value)

The Abs function is used to convert a value into an absolute value, i.e. it makes the 
number positive. 

INT Function

Syntax : Result = INT (real value)

When dealing with real (floating point) numbers, it is sometimes necessary to view 
only the integer (whole) section of the number. Use Int to return just the integer part 
of the number, rounded towards zero.

PI Function

Syntax : Result = PI

The Pi function is used to produce pi for all mathematical calculations that require it. 
Pi is the ratio of a circle’s circumference to its diameter. Pi is approximated as 
3.1415926535897932385.



© 1998 – 1999 ProSoft Technologies

Extended mathematical functions

MAX Function

Syntax : Result = MAX (value1,value2)

The Max function compares two values (expressions) and returns which one is larger. 
The return value of ‘–1’ indicates that the left size was largest, however a return value
of ‘+1’ or ‘1’ indicates the right side was largest. If both values are the same, a ‘0’ is 
returned.

MIN Function

Syntax : Result = MIN (value1,value2)

Identical to the Max function, however returns the minimum of two values. See Max 
function for more details.

SGN Function

Syntax : Result = SGN (value)

The function Sgn returns the sign of the value or expression passed to it. This function
will return ‘-1’ if the  value is negative, ‘0’ is the value is zero or ‘1’ if the value is 
positive. 

SQR Function

Syntax : Result = SQR (value)

The Sqr function returns the square of the value passed.

EXP Function

Syntax : Result = EXP (value)

The Exp function returns a value, raised to the power of the value supplied. Where the
value returned is the base of natural logarithms.



© 1998 – 1999 ProSoft Technologies

LOG Function

Syntax : Result = LOG (value)

The Log function returns the log base 10 of the supplied value.

LN Function

Syntax : Result = LN (value)

The LN function returns the natural logarithm of the value supplied.



© 1998 – 1999 ProSoft Technologies

Trigonometry functions

COS Function (Cosine)

Syntax : Number = COS (angle)

The Cos function returns the cosine of a given angle.

SIN Function (Sine)

Syntax : Number = SIN (angle)

The Sin function returns the sine of a given angle.

TAN Function (Tangent)

Syntax : Number = TAN (angle)

The Tan function return the tangent of the supplied value.

ACOS Function (Arc Cosine)

Syntax : Number = ACOS (angle)

The ACos function returns the Arc Cosine of a given angle.

ASIN Function (Arc Sine)

Syntax : Number = ASIN (angle)

The ASin function returns the Arc Sine of a given angle.

ATAN Function (Arc Tangent)

Syntax : Number = ATAN (angle)

The ATan function return the Arc Tangent of the supplied value.



© 1998 – 1999 ProSoft Technologies

HCOS Function (Hyperbolic Cosine)

Syntax : Number = HCOS (angle)

The HCos function returns the Hyperbolic Cosine of a given angle.

HSIN Function (Hyperbolic Sine)

Syntax : Number = HSIN (angle)

The HSin function returns the Hyperbolic Sine of a given angle.

HTAN Function (Arc Tangent)

Syntax : Number = HTAN (angle)

The HTan function return the Hyperbolic Tangent of the supplied value.



© 1998 – 1999 ProSoft Technologies

String Functions
Simple Functions

LEFT Function

Syntax : String = LEFT (source string, count)

The left function reads a number of characters for the source string, starting at the left-
hand side. The count should be >0 and has no ‘real’ upper limit (i.e. its can go up to 
the maximum integer value supported). If you supply a count of 0, Left returns a 
empty string. 

RIGHT Function

Syntax : String = RIGHT (source string, count)

The right function starts at the right hand side of the source string, and returns the 
‘count’ number of characters. Count should be, again, greater than zero. However, if 
you supply 0 or a negative number, right returns a empty free.

MID Function

Syntax : String = MID (source string, start position, character count)

The Mid function is used to return a number of characters from the middle of a string. 
You supply the starting position and the number of character you want returned.

INSTR Function

Syntax : number = INSTR (guest string, host string [,start position])

The Instr function is used to return the position of a ‘host’ string, within a ‘guest’ 
string. For example, the string ‘And’ occurs at the 6th position in the following string 
‘Hello And Welcome’. This function IS case-sensitive, to convert it to a non-case-
sensitive operation, uppercase or lowercase both strings before performing the INSTR
function. 
The optional start position is used to offset where GamesBasic starts to look for the 
‘host’ string within the ‘guest’ string. If GamesBasic doesn’t find the string, -1 (false) 
is returned.



© 1998 – 1999 ProSoft Technologies

Case conversion.

The case conversion functions, uppercase and lowercase, are used frequently when 
dealing with interpreting user-input. By converting the user-input into standard format
(E.g. lowercase) you can easily test results and save speed in comparing both upper 
and lower case characters.

UPPERCASE Function

Syntax : String = UPPERCASE (String)

This function converts the characters in a string into upper case (capital) letters, and 
places the results into a new string.

LOWERCASE Function

Syntax : String = LOWERCASE (String)

This works in a similar way to the uppercase function, however the new string created
contains lowercase letters.



© 1998 – 1999 ProSoft Technologies

Manipulating Strings

Sometimes you may want to handle your strings for special purposes, such as printing
large volumes of continuous information.

STRING Function

Syntax : String = STRING (character, count)

The String function allow you to create a new string using the first character of a 
existing / supplied string. By supplying the character and a count value, String returns
a new string containing ‘count’ number of the first character. 

Example

A = String(“A”,10)     , creates a string = ‘AAAAAAAAAA’
B = String (“Happy”,5) , creates a string = ‘HHHHH’

SPACE Function

Syntax : String = SPACE (count)

The Space function is extremely similar to the String function, however it creates a 
string contain ‘count’ number of spaces. This function is provided, due to the large 
amount of spacing required by some programs. This function is much faster than 
using the String function to do the same role.

Example

A = Space(10)     , creates a string = ‘^ ^ ^ ^ ^ ^ ^ ^ ^ ^’    [ ‘^’ = a space ]



© 1998 – 1999 ProSoft Technologies

FLIP Function

Syntax : String = FLIP (source string)

The Flip command is used to flip or reverse the order of characters in a string. 

Example

New = Flip(“!BG gnippilf”) , creates a string = ‘flipping GB!’

REPEAT Function

Syntax : String = REPEAT (source string, count)

To repeat the same string (not character) use the Repeat function. This builds a new 
string, contains ‘count’ number of copies of the source string.

Example

New = Repeat(‘HI!’,3) , creates a string = ‘HI!HI!HI!’

CHR Function

Syntax : String = CHR (number)

By passing a number to this function, Chr will return a single character representing 
the ASCII value of that number .

Example

New = Space(65) , The variable New – contains the character ‘a’

ASC Function

Syntax : Number = ASC (string)

The Asc function performs the reverse of the CHR function, its will return the ASCII 
value of a supplied character.



© 1998 – 1999 ProSoft Technologies

LEN Function

Syntax : Number = LEN (String) 

The Len command returns the length of a supplied string.



© 1998 – 1999 ProSoft Technologies

Text commands and functions
Overview

What are text commands and functions?

GamesBasic provides a way of placing text onto screens in a quick and easy way. The
Text commands and function provide you with a range of commands to perform the 
operations, and functions to return results about these commands.  This section 
assumes you understand fonts and their details (such as size, name, etc.)

Scope of commands and functions

Each of the font commands and functions will set the font only on the current screen, 
so screens can have different font details.



© 1998 – 1999 ProSoft Technologies

Font Manipulation Commands
Overview

The commands in this section allow you to change the various different characteristics
of fonts, such as their size, style, colour and drawing mode. 

FONT Command

Syntax : FONT <section> <value>

The Font command allows you to change the many different settings associated with 
fonts. This one command, by use of the section parameter, can be used to set the 
current font’s size, name, style, colour, etc.

FONT SIZE Command

Syntax : FONT SIZE <value>

This variation of the Font command is used to set the size of the font. For 
monospaced or fixed-width fonts the size may have to be a set value or the resulting 
font may look blocky. For Proportionally spaced or TrueType fonts, the size is less 
important as GamesBasic can scale the font with good accuracy.

FONT NAME Command

Syntax : FONT NAME <value>

By using the NAME variation it is possible to change the font’s face (or name). If you 
supply a font name not installed on the system, GamesBasic will look for the closest 
match (by looking at all other fonts with similar styles, sizes, pitch, etc.)

Example

Font Name “Tohama”
Font Name Arial

Let New_Font = “Courier”
Font Name New_Font



© 1998 – 1999 ProSoft Technologies

FONT STYLE Command

Syntax : FONT STYLE <value>

The Font Style command is used to set features such as bold, italics, underline or 
strikeout. However, the value passed to font style is a binary value. The following 
table show bit allocations.

Bit No Meaning Value
1 Bold 1
2 Italics 2
3 Underline 4
4 Strike Out 8

Example

Font Style 1 , 0 = Binary ‘0000’ no styles (normal)
Font Style 1 , 1 = Binary ‘0001’ thus bold is set
Font Style 3 , 3 = Binary ‘0011’ thus bold and italics is set
Font Style 14 , 14 = Binary ‘1110’ all styles are on, except bold
Font Style 15 , 14 = Binary ‘1111’ all styles

FONT COLOR Command

Syntax : FONT COLOR <value>

The Font Color command is used to set the colour of the current font, which is 
expressed in a RGB Value. 
Note : Before the font is drawn, GamesBasic looks up the palette for the closest match
to the RGB value entered.

Example

Font Color 255 , full Blue
Font Color 0 , black
Font Color 16777215 , white
Font Color 65025 , yellow



© 1998 – 1999 ProSoft Technologies

FONT DMODE Command

Syntax : FONT DMODE <value>

The Font DMode command is used to set how any text, printed using the font, will be
added to the existing graphics on the current screen. The system caters for a number 
of different modes, use the following table to set the <value>.

Value Name Description
1 Replace This mode will place the text onto the current 

screen by :
1. Clearing the area beneath the text, to the 

colour set by <value2> (background colour) 
by the Font Color command

2. Draw the text into that area
2 Transparent This mode will draw text transparently onto the 

current screen, and will not destroy any area 
beneath it.

3 AND The text will be logically AND’ed with the 
current screen.

4 XOR The text is Exclusive OR’ed with the current 
screen data. 

5 IGNORE All font based operations, are now ignored.



© 1998 – 1999 ProSoft Technologies

Font Manipulation Functions
Overview

These commands allow you to query details about the current fonts begin used and 
available for use.

FONTNAME Function

Syntax : String = FONTNAME <integer index>

The FontName function returns the name of the font at location <integer index> 
within the current font list. The <integer index> runs between zero (0) and the value 
returned by FontMax.

Example

For Counter = 0 To FontMax
       Print FontName(Counter)
Next Counter

FONTMAX Function

Syntax : Integer = FontMax

The FontMax function returns the number of fonts currently available to the user.

FONTHEIGHT Function

FONTWIDTH Function

Syntax : Integer = FontHeight
Syntax : Integer = FontWidth

As their names suggest FontHeight and FontWidth both return the current font’s 
height and width in pixels. 

TEXTWIDTH Function



© 1998 – 1999 ProSoft Technologies

Syntax : Integer = TextWidth(Expression)

By supplying a string expression to TextWidth, GamesBasic will return the number of
pixels required to display this text in the current font.

MAXCHARSWIDE Function

MAXCHARSHIGH Function

Syntax : Integer = MaxCharsWide
Syntax : Integer = MaxCharsHigh

These two functions both return the number of characters which will fit horizontally 
and vertically in the current screen. Accurate values can only be returned for mono-
spaced fonts because each characters is set to a standard size.

FONTSTYLE Function

Syntax : Integer = FontStyle

This command returns the current style in use in the form of a number. Please see the 
Font Style command for more information on the value returned.

XCURS Function

YCURS Function

Syntax : Integer = XCurs
Syntax : Integer = YCurs

Returns the current position of the text cursor. 



© 1998 – 1999 ProSoft Technologies

Direct Font Manipulation Commands
Overview

These commands provide a way of directly setting some of the font styles and 
drawing modes for the current screen. These commands are provided, due to the fact 
that they are faster than called the Font command, and can better understood.

BOLD Command

Syntax : BOLD <on> ! <off>

The Bold command allows uses to turn on and off the bold style for the current 
screen. This command performs the same function as the Font Style command, only 
faster.

ITALICS Command

Syntax : ITALICS <on> ! <off>

The Italics command allows uses to turn on and off the italics style for the current 
screen. This command performs the same function as the Font Style command, only 
faster.

UNDER Command

Syntax : UNDER <on> ! <off>

By using the Under command users can turn the underline style for the current screen 
on and off. This command performs the same function as the Font Style command, 
only faster.

STRIKE Command

Syntax : STRIKE <on> ! <off>

By using the Strike command users can turn the strikeout style for the current screen 
on and off. This command performs the same function as the Font Style command, 
only faster.



© 1998 – 1999 ProSoft Technologies

INVERSE Command

Syntax : INVERSE <on> ! <off>

Swaps the paper (brush) colour and the font colour around, does not affect normal 
graphics commands. This commands performs the same function as the Font DMode 
command, only faster. Setting inverse to <off>, sets the Draw Mode (DMode) to 
Replace.

SHADE Command

Syntax : SHADE <on> ! <off>

This function turns the shading of text on and off. When on, all text will be drawn in a
grey colour. If the current palette does not contain a grey colour, GamesBasic looks 
for the nearest match. This commands performs the same function as the Font DMode
command, only faster. Setting to <off>, sets the Draw Mode (DMode) to Replace.



© 1998 – 1999 ProSoft Technologies

Text Commands
Overview

GamesBasic provides a host of commands which allow you to easily output text in 
various formats to the current screen. 

Note : This commands are powerful and versatile, however they do require a large 
amount of time to execute and thus are not recommended for use in applications 
which require high-speed command execution. 

CENTER Command

Syntax : CENTER <expression>

The Center offers a quick and easy way of centring any text onto the current screen. 
The center command starts drawing text at the current graphics location, which can be
set using GFXLocate command – Since we center text, you need only set the vertical 
parameter – the horizontal value is not important.

Example

Screen Open 1,400,400
GFXLocate 0,100
Center “Hi this is center in screen”

PRINT Command

Syntax : PRINT <expression>

The PRINT command is the most powerful of GamesBasic’s  text orientated 
commands, allowing some complex operators. The Print command supports text grids
(where text is aligned to a special invisible grid) and text preformatting (where 
GamesBasic will read imbedded escape codes within an expression to change font 
styles, sizes, colours, etc.). Please refer to the sections of Text Grids and Text 
Preformatting for more information.

? Command

See Print command for more information



© 1998 – 1999 ProSoft Technologies

Text Grids
Overview

Text Grids offer an excellent way of displaying information on screen, and always 
‘knowing’ exactly where the any character has been or is going to be placed. The Text
Grid system only works with Mono-spaced fonts, due to the need for GamesBasic to 
know each fonts width and height. If you are currently using a variable width font 
when you turn on the text grids, GamesBasic will attempt to find a fixed width font 
which matches it. There is no guarantee that GamesBasic will find a fixed font. If you 
continue to use Text Grids without setting a fixed width font, GamesBasic will not be 
able to ‘know’ the position of any characters, and will return unpredictable results. 

SET TEXT GRID Command

Syntax : SET TEXT GRID <on> / <off>

The Set Text Grid command is used to turn the text grid system on and off. When you
turn this system on, GamesBasic will draw all monospaced fonts in a grid. Allowing 
you to navigate around this grid using commands such as Cup and CDown.  
Note : Turning this on when you are using a variable width font will result in 
GamesBasic looking for a fixed width font which matches ALL attributes. If GB 
doesn’t find a found with these attributes, the font stays unchanged. Thus, all 
operations will be unpredictable due to the variable width font.



© 1998 – 1999 ProSoft Technologies

Text Grid - Navigation Commands

This section details what commands to use for navigating around text grids, these 
commands only correctly work when the Set Text Grid On command is issued, and a 
mono-spaced font is used.

HOME Command

Syntax : HOME

The Home command is used to place the text cursor back to the upper left hand corner
of the current screen. This upper corner is refereed to as co-ordinates (0,0). The Home
command performs the same function as Locate 0,0.

LOCATE Command

Syntax : LOCATE <x>,<y>

The Locate command allows absolute control over the text cursors position on the 
current screen. Locate requires 2 parameters, an X and Y Value. These values are the 
grid co-ordinates you wish to place the text cursor at. 
Note : These X and Y values are not screen co-ordinates.

MEMORIZE Command

Syntax : MEMORIZE <what>

The Memorize command is used to allow you to record the current X and/or Y text 
cursor location. By supplying either ‘X’ or ‘Y’ or ‘XY’, you can instruction 
GamesBasic to record either the X or Y value, or both. 

REMEMBER Command

Syntax : REMEMBER <what>

The Remember command is used in conjunction with the Memorize command to 
recall any ‘saved’ or memorised text co-ordinates. By supplying either ‘X’ or ‘Y’ or 
‘XY’ you will tell GamesBasic which of the co-ordinates to recall.



© 1998 – 1999 ProSoft Technologies

CMOVE Command

Syntax : CMOVE <x>,<y>

Similar to the Locate command the CMove command allows you to move the text 
cursor. Instead of supplying an absolute value, you supply an offset value from the 
current text cursor’s position. For example Locate 10,20 would move the text cursor 
to 10,20. If after this you called CMove 10,20 GamesBasic would move the cursor to 
20,40. It thus adds the value 10 to the existing X location of 10, and 20 to the existing 
Y location of 20.

CUP Command

Syntax : CUP

This command moves the text cursor up one place, the same as calling CMove 0,-1

CDOWN Command

Syntax : CDOWN

This command moves the text cursor down one place, the same as calling CMove 0,1

CLEFT Command

Syntax : CLEFT

This command moves the text cursor left one place, the same as calling CMove -1,0

CRIGHT Command

Syntax : CRIGHT

This command moves the text cursor right one place, the same as calling CMove 1,0



© 1998 – 1999 ProSoft Technologies

Text Grid - Scrolling
GamesBasic allows you to easily scroll the contents of a line vertically or 
horizontally. By using the following two commands, text grids can be scrolled to 
produce text that roles onto the screen. 

HSCROLL Command

Syntax: HSCROLL (<L>|<S>,<L>|<R>)

The HScroll command is used to scroll a line or the entire screen horizontally 1 text 
Grid Square (i.e. Width of the current font). You have to supply two parameters. The 
first parameter is the letter ‘L’ or ‘S’ – Stating the Line or Screen is to be scrolled. 
The second parameter is ‘L’ or ‘R’ for the direction, Left or Right. 

VSCROLL Command

Syntax: VSCROLL (<L>|<S>,<U>|<D>)

The VScroll command is used to scroll a line or the entire screen vertically 1 text Grid
Square (i.e. Height of the current font). You have to supply two parameters. The first 
parameter is the letter ‘L’ or ‘S’ – Stating the Line or Screen is to be scrolled. The 
second parameter is ‘U’ or ‘D’ for the direction, Up or Down.



© 1998 – 1999 ProSoft Technologies

Text Preformatting
Text preformatting is a powerful feature of GamesBasic allowing you to change font 
sizes, colours, styles, includes tab’s and even move the text cursor all using imbedded 
codes within expressions.

SET TEXT PREFORMATTING Command

Syntax : SET TEXT PREFORMATTING <on>|<off>
 
This command allow you to specify whether GamesBasic will preformat text before 
printing it on screen. This preformatting only works with the PRINT command, but 
allows complex commands to be imbedded in normal text. Imbedded codes can allow 
you to change the text size, style, colour, etc.

SET TAB Command

Syntax : SET TAB <expression>
 
This command allows you to supply at which column width a tab exists. The default 
value is 8, so if a tab is inserted the next text will be printed at the start of the next 
column (i.e. position 8 or 16 or 24 or 32 and so on..)



© 1998 – 1999 ProSoft Technologies

Text Preformatting – Functions and escape 
codes
The following functions can be used to imbed escape codes into expressions, along 
with each function you will find an the escape sequence that it generates – allowing 
you to create your own escape codes without calling the functions (please note all 
escape code characters are in UPPER case).

PreSTYLE Function

Syntax : Escape Sequence = PreStyle (<Bold>|<Italics>|<Underline>|<Strikeout>)

The PreStyle function generates a escape sequence which sets the current screens font
style. By passing a simple keyword (not an expression) you can toggle the style on or 
off. 

Example

Print PreStyle(BOLD) + “THIS IS IN HOLD!”  
Print PreStyle(Variable_Containing_The_String_BOLD) + “THIS IS INVALID!”

The second version is invalid, PreStyle does not handle expressions.

Escape Sequence Generated

Chr(27) + “Fx” 

X = B (for bold)
X = I (for italics)
X = U (for underline)
X = S (for strikeout)



© 1998 – 1999 ProSoft Technologies

PreINK Function

Syntax : Escape Sequence = PreInk (expression)

The PreInk function changes the current screens font colour to the palette index 
supplied. The PreInk function can handle complex expressions that return a valid 
integer value.

Example

Print PreInk(1) + “This is in red!”
Print PreInk(512 \ 2) + “This is in white “ + PreInk(1) + “but I'm seeing red!”

Escape Sequence Generated

Chr(27) + “Ix” + “ “ 

X = A valid integer string, representing the colour index.

Note : There must be an terminating space, or GB will not see the end of the number! 
(The space is not printed).



© 1998 – 1999 ProSoft Technologies

PreMOVE Function

Syntax : Escape Sequence = PreMove (X,Y)

The PreMove function generates a escape sequence which will allow you to move the 
cursor by X and Y amount. The X and Y parameters can be expression, as long as 
they return a valid integer value. X and Y can also be negative.

Example

Home
Print PreMove(10,10) + “I'm sitting at position (10,10)!”
Print PreMove(2,2) + “Bit I'm at 12,12 because 10 (old position) + 2 = 12!”

Escape Sequence Generated

Chr(27) + “Mdx” + “ “ 

D = Movement direction, values : “U” – Up, “D” – Down, “L” – Left & “R” - Right
X = A valid integer string, stating amount of moment!

Note : The PreMove function will generate 2 escape sequences, one for the Up/Down 
movement, the other for the Left/Right movement.
Note : There must be an terminating space, or GB will not see the end of the number! 
(The space is not printed).



© 1998 – 1999 ProSoft Technologies

PreLOCATE Function

Syntax : Escape Sequence = PreLocate (X,Y)

The PreLocate function generates a escape sequence which will set the location of the
text cursor to the X and Y values supplied, rather than move them by the X and Y 
values. If you require movement by X and Y amount use PreMove, if you want them 
set absolutely use PreLocate. This function accepts expressions which resolve to 
positive or negative integers.

Example

Locate 20,20
Print PreLocate(10,10) + “I'm sitting at position (10,10)!”
Print PreLocate(12,2) + “I'm sitting at position (12,1)” + PreLocate(1,1) + “I'm at 1,1”

Escape Sequence Generated

Chr(27) + “Xz “ + “ “ + Chr(27) + “Yz” + “ “

z = Valid integer string.

Note : After each integer value there must be a space, without this GB will not be able
to see the end of the integer value.

TAB Function

Syntax : Escape Sequence = TAB

The Tab function simply returns the tab escape code, use the Set Tab command to 
change the width of the tab.

Example

Set Tab 8
Print “Hello” + Tab + “I'm aligned to the 8th column!”

Escape Sequence Generated

Chr(27) + “T“

Note : No terminating space.



© 1998 – 1999 ProSoft Technologies

PreCDown Function

PreCUP Function

PreCLeft Function

PreCRight Function

Syntax : Escape Sequence = PreCDown(Amount)

All these functions move the cursor by the supplied amount. See the CDown, CUp, 
CLeft and CRight commands for more information. The amount can be a expression 
which resolves to a valid positive or negative number, GamesBasic will automatically
convert (for example) a negative PreCRight into a positive CLeft function.

Example

Print “GamesBasic By James Happy” + PreCLeft(5) + “Hunter”

Escape Sequence Generated

Chr(27) + “Mdx” + “ “ 

D = Movement direction, values : “U” – Up, “D” – Down, “L” – Left & “R” - Right
X = A valid integer string, stating amount of moment!

Note : There must be an terminating space, or GB will not see the end of the number! 
(The space is not printed).



© 1998 – 1999 ProSoft Technologies

Text grid - functions

GRID Function

Syntax : Boolean = Grid

The Grid functions return true or false depending on whether text grids are currently 
enabled or not.



© 1998 – 1999 ProSoft Technologies

Date Time commands and functions
Overview

What are date and time commands / functions?

GamesBasic allows you the programmer to use date and times easy and effectively 
inside your programs. GamesBasic supports a universal standard to handle date and 
times, and allow you to format them into many different user-definable ways.



© 1998 – 1999 ProSoft Technologies

Date Commands and Functions
Overview

These commands and functions deal only with the reading and formatting of dates.

CURRENTDATE Function

Syntax : Result = CurrentDate

The CurrentDate function returns a real number which represents the number of days 
from 12/30/1899. This system is used to maintain compatibility with Windows and 
OLE 2.0 Automation.

DATETOSTR Function

Syntax : Result = DATETOSTR(<expression>)

The DateToStr function converts a real number into a valid date in the format 
specified in the ShortDateFormat global variable (in windows). The usual format is 
‘dd/mm/yy’

STRTODATE Function

Syntax : Result = STRTODATE(<expression>)

The reverse of the DateToStr function, StrToDate takes a string expression and tries 
to return a valid date real number. Failure to include a valid date in the string will 
result in an error.



© 1998 – 1999 ProSoft Technologies

Time Commands and Functions
Overview

These commands and functions deal only with the reading and formatting of times.

CURRENTTIME Function

Syntax : Result = CurrentTime

The CurrentTime function returns a real number which represents the number of days
from 12/30/1899. This system is used to maintain compatibility with Windows and 
OLE 2.0 Automation.

TIMETOSTR Function

Syntax : Result = TIMETOSTR(<expression>)

The TimeToStr function converts a real number into a valid TIME in the format 
specified in the LongTimeFormat global variable (in windows). The usual format is 
‘hh:mm:ss’

STRTOTIME Function

Syntax : Result = STRTOTIME(<expression>)

The reverse of the TimeToStr function, StrToTime takes a string expression and tries 
to return a valid time real number. Failure to include a valid time in the string will 
result in an error.



© 1998 – 1999 ProSoft Technologies

Date & Time Misc. Commands and 
Functions
FORMATDATETIME Function

Syntax : Result = FormatDateTime(<String>,<real>)

This function allows the user to format the date and time exactly as he/she see fit. The
first expression should return a string which can contain any of the values below, 
while the second expression should contain a real number describing the date/time..
c Displays  the  date  using  the  format  given  by  the  ShortDateFormat  global

variable, followed by the time using the format given by the LongTimeFormat
global variable. The time is not displayed if the fractional part of the
DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames global variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by

the LongDayNames global variable.
ddddd Displays  the  date  using  the  format  given  by  the  ShortDateFormat  global

variable.
dddddd Displays  the  date  using  the  format  given  by  the  LongDateFormat  global

variable.
m Displays the month as a number without a leading zero (1-12). If the m

specifier immediately follows an h or hh specifier, the minute rather than
the month is displayed.

mm Displays  the  month  as  a  number  with  a  leading  zero  (01-12).  If  the  mm
specifier immediately follows an h or hh specifier, the minute rather than
the month is displayed.

mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by
the ShortMonthNames global variable.

mmmm Displays the month as a full name (January-December) using the strings given
by the LongMonthNames global variable.

yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays  the  time  using  the  format  given  by  the  ShortTimeFormat  global

variable.
tt Displays  the  time  using  the  format  given  by  the  LongTimeFormat  global

variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am'

for  any  hour  before  noon,  and  'pm'  for  any  hour  after  noon.  The  am/pm
specifier can use lower, upper, or mixed case, and the result is displayed
accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a'
for any hour before noon, and 'p' for any hour after noon. The a/p specifier
can use lower, upper, or mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the
contents of the TimeAMString global variable for any hour before noon, and
the contents of the TimePMString global variable for any hour after noon.

/ Displays  the  date  separator  character  given  by  the  DateSeparator  global
variable.

: Displays  the  time  separator  character  given  by  the  TimeSeparator  global
variable.



© 1998 – 1999 ProSoft Technologies

'xx'/"xx"Characters enclosed in single or double quotes are displayed as-is, and do
not affect formatting.



© 1998 – 1999 ProSoft Technologies

Input : Keyboard Commands And 
Functions
Overview

GamesBasic allows you to access the keyboard easily and quickly, so you can get 
results on what the user is typing. 

WAIT KEY Command

Syntax : Wait Key

The Wait Key command is a variation of the normal Wait command, but instead of 
supplying the number of sections you want GamesBasic to pause – you allow 
GamesBasic to remain paused (waiting) for a key press (any key).

This command does not effect any running sprites, music, effects, etc.

INKEY Function

Syntax : String = Inkey

The Inkey function allows you to retreive any key strokes which have occurred since 
your last access of the Inkey function.
This function is extremely handy, it allows you to forget about checking the keyboard 
until it really matters. Any keys you have not ‘looked’ at are stored until you call 
Inkey.  Unlike if you were to use the KeyDown functions, where you would have to 
constantly call the function to see if a new key has been pressed!

KEYDOWN Function

Syntax : Boolean = KeyDown(scancode)

This function allow you to directly read the state of any key on the keyboard. By 
supplying the scan code of a key to KeyDown you will receive either True or False. A 
True result shows you the key was down, False the key has not been pressed.



© 1998 – 1999 ProSoft Technologies

KEYSHIFT Function

KEYCTRL Function

KEYALT Function

Syntax : Integer = KeyShift
Syntax : Integer = KeyCtrl
Syntax : Integer = KeyAlt

These three functions are used to test the status of 6 special keys on the keyboard. 
These keys are the Control, Alt and Shift keys (both left and right side of the 
keyboard). Each function when called will return an integer value which will 
represent the current state of the key. The following table show you what the 4 integer
values mean.

Integer Value Description
0 Neither the left or right key was down
1 Left key depressed
2 Right key depressed
3 Both keys depressed

Example

Print KeyShift
If KeyCtrl = 1 Then Print “Left Control Key Down!”



© 1998 – 1999 ProSoft Technologies

User defined procedure and 
functions
Overview

GamesBasic provides a powerful way for users to structure there programs using their
own user defined procedure and functions. GamesBasic supports procedures and 
functions (simply called procedures from here forth)  listed below are some 
advantages and features of the system GamesBasic offers..

 Procedures can be placed anywhere in your code.
 You do not need to predefine them, before calling them.
 They support nearly unlimited parameter passing.
 They support the passing of full expressions, not just variables.
 They can be called recursively, until a stack overflow :)
 They support local variables, destroyed on exist from a procedure.
 There names are unlimited in size.

Functions

GamesBasic does not support user-defined functions (yet).. 



© 1998 – 1999 ProSoft Technologies

Procedures

The following commands are for use in the declaration, handling and calling of 
procedures within GamesBasic. 

PROCEDURE Command

Syntax : PROCEDURE <Name> [(<Variable>[,<Variable>])]

The Procedure command declares the following code, until the EndProc command to
belong to the named procedure. A Procedure must have a unique name which is not 
an existing reserved word, variable or procedure name. You can optionally declare a 
list of variables what much be filled when the procedure is called. 

Example

Call Print_Text_Count(“Hello”)

Procedure Print_Text_Count(TextToCount)
Print “Length of string “ + TextToCount + “ is “ + Len(TextToCount)
EndProc

ENDPROC Command

Syntax : ENDPROC

The EndProc command is used to declare the end of a procedure. All Procedure 
commands must be terminated with a EndProc.



© 1998 – 1999 ProSoft Technologies

CALL Command

Syntax : CALL <Proc Name> [(<Variable>[,<Variable>])]

The Call command is used to jump to a procedure and start executing the code within 
that procedure. If a procedure requires a number of variables, they must be supplied in
brackets after the procedure name and separated by semicolons. 
The commands after the call command will be executed when all the code has been 
ran inside the procedure, or a ExitProc command is performed.

EXITPROC Command

Syntax : EXITPROC

The ExitProc command performs the same role as EndProc except inside a 
procedure. When you need to terminate and jump out of a procedure, the ExitProc 
command is used to return control back to the instruction after the calling point.



© 1998 – 1999 ProSoft Technologies

Debugging Commands & Functions

GamesBasic provides a comprehensive set of debugging utilities. However you may 
need to gain information from deep within you programs – where normal debugging 
practices are just not possible! The following commands and functions are useful and 
can be called anywhere.

OUTPUTDEBUG Command

Syntax: OUTPUTDEBUG <expression>

This command is used in connection with the debug window (available only in the 
GamesBasic IDE – Not in standalone mode). When you open the debug window any 
expressions passed to the OutputDebug command are printed directly on the debug 
window. 

TICKCOUNT Function

Syntax: Integer = TickCount

TickCount returns (in a integer) the number of millisecond that have passed single the
computer was turned on. This value is used to see how fast a particular section of 
code is executing. For example. Take the value of TickCount at the start and end of a 
block of code, and subtract the two values. The difference is the number of 
milliseconds required to run the code!



© 1998 – 1999 ProSoft Technologies

Immedatate Mode
What is Immedaite Mode?

Immediate mode is a window that appears after you have finished running your 
program that allows you to remain inside the GamesBasic run-time environment and 
execute commands by typing them on the keyboard.
If for example you are running a program and you press ‘ESCAPE’ to break it (if that 
is the current Break Key) GamesBasic will popup the immediate mode window. If 
you program uses the variable ‘Counter’ you could easily type ‘Print Counter’ – 
which would cause GamesBasic to run the command. Thus the value of Counter 
variable would be printed where you text cursor is!
 
What commands can I use?
Due to the limits of typing only one command per line multi-line commands (such as 
FOR..NEXT or IF..THEN..ELSE statements) can not be used. However all other 
commands can be used, any errors will be reported inside the immediate mode 
window.

Current Limits..
There are a current number of limits or draw back to the immediate mode because of 
GamesBasic alpha state (ie. Its not finished) these will allow be removed in the later 
releases. The keyboard implementation is not good, it is a little buggy and we know 
the delete does not work. Also command link history does not work either!



© 1998 – 1999 ProSoft Technologies

Commands and functions special to 
Immediate Mode.

The following list of commands and functions are special to the immediate mode and 
executing them within GamesBasic will produce unreliable results.

LINES Command

Syntax: LINES <number>

Not supported yet. Will resize the display to <number> of lines.

QUIT Command

Syntax: QUIT

This command causes GamesBasic to finish executing the current program and return 
directly to the IDE. If issued in the immediate mode this will return the user to the 
IDE.

STOP Command

Syntax: STOP

Not Yet Supported. Will cause GamesBasic to exit immediate mode and restart the 
application where it was interrupted. 



© 1998 – 1999 ProSoft Technologies

Error Messages
Run-time error messages

Overview

Run-time error messages, are errors which occur when the program is running. These 
sorts of errors can only occur while the program is running, for example a divide by 
zero error.

Error Listing
Error <0> : Failed To Start Tokenization ** Occurs when the tokenization 
routine fails to start even processing a source code line!

Error <1> : Testing Failed, there was not enough `Token Buffer` space to 
check your program for errors. Please check and increase the amount of 
`Token Buffer` space allocated.' ;

Error <2> : Testing Failed, could not test this program as there was not 
enough `Source Buffer` space to check your program for errors. Please check 
and increase of the amount of `Source Buffer` space allocated.' ;

Error <3> : Testing Failed, could not test this program because <Msg 
Generated By Validation Routines>

Error <4> : Testing Failed, the following problem raised during the first 
pass <Msg Generated by First Pass Routine>

Error <5> : Testing Failed, error is expression caused by <Msg>
Error <6> : Illegal screen number.
Error <7> : `TO` expected, <BLAH> found.'
Error <8> : Illegal APPEAR speed, value must be between 1 and 50.
Error <9> : Expected semi-colon `,` but found <BLAH>
Error <10> : Illegal <command> dimensions, please check all dimensions are 
present and valid integers.

Error <11> : Expected end of line.
Error <12> : Unexpected end of line found.
Error <13> : Expected `On` Or `Off`, but <BLAH> found
Error <14> : Run Time Error - Internal Error (RTIE), could not find a valid 
token in execution path.

Error <15> : Run Time Error - Screen <x> is not open.
Error <16> : Run Time Error - Loop stack overflow.
Error <17> : Run Time Error - Unterminated DO..LOOP structure, could not 
find LOOP command



© 1998 – 1999 ProSoft Technologies

Error <18> : Run Time Error - Invalid value within expression
Error <19> : Run Time Error - Invalid operator within expression
Error <20> : Run Time Error - Type mismatch within expression
Error <21> : Run Time Error - Value too big for variable
Error <22> : RTE (22) - Set Line command failed, line style value was out of
bounds

Error <23> : RTE (23) - Circle command could not be performed, Windows '95 
limits exceeded.

Error <24> : RTE (24) - Screen <x> is already open.
Error <25> : RTE (25) - Screen dimensions are too big or too small.
Error <26> : RTE (26) - ** NOT SUPPORTED ** Incorrect or unsupported screen 
resolution, must be "640x480", "320x200", "800x600", "1024x768", "640x400" 
or "320x240".' ; ;

Error <27> : RTE (27) - Screen number <x> is invalid!
Error <28> : RTE (28) - Screen x is not open.
Error <29> : RTE (29) - Could not clone current screen, clone destination 
screen already exists (x).

Error <30> : RTE (30) - Could not clone current screen, all available 
screens are used.

Error <31> : RTE (31) - Could not change ZOrder of screen (x). Screen is not
open.

Error <32> : RTE (32) - Could not change the current screen to (x), this 
screen is not open.

Error <33> : RTE (33) - Could not change screen location, screen (x) is not 
open.

Error <34> : RTE (34) - Could not change screen dimensions, screen (x) is 
not open.

Error <35> : RTE (35) - COS, invalid value passed.
Error <36> : RTE (36) - SIN, invalid value passed.
Error <37> : RTE (37) - Invalid parameters passed to string function.
Error <38> : RTE (38) - Invalid parameters passed to maths function.
Error <39> : RTE (39) - ADD Command failed, could not find variable <x>.
Error <40> : RTE (40) - SUB Command failed, could not find variable <x>.
Error <41> : RTE (41) - MAX function failed, value passed were invalid 
and/or not of matching type

Error <42> : RTE (42) - MIN function failed, value passed were invalid 
and/or not of matching type



© 1998 – 1999 ProSoft Technologies

Error <43> : RTE (43) - SGN function failed, value passed was not valid 
and/or not of the correct type

Error <44> : RTE (44) - INT function failed, value passed was not valid 
and/or not of the correct type

Error <45> : RTE (45) - SQR function failed, value passed was not valid 
and/or not of the correct type

Error <46> : RTE (46) - EXP function failed, value passed was not valid 
and/or not of the correct type

Error <47> : RTE (47) - LOG function failed, value passed was not valid 
and/or not of the correct type

Error <48> : RTE (48) - LN function failed, value passed was not valid 
and/or not of the correct type

Error <49> : RTE (49) - ACOS, invalid value passed.
Error <50> : RTE (50) - HCOS, invalid value passed.
Error <51> : RTE (51) - ASIN, invalid value passed.
Error <52> : RTE (52) - HSIN, invalid value passed.
Error <53> : RTE (53) - ATAN function failed, value passed was not valid 
and/or not of the correct type

Error <54> : RTE (54) - HTAN function failed, value passed was not valid 
and/or not of the correct type

Error <55> : RTE (55) - Invalid parameter passed to FONT command. Value 
passed was no valid and/or not of the correct type

Error <56> : RTE (56) - FONT DMODE command failed, invalid value passed
Error <57> : RTE (57) - Invalid parameter passed to command, excepted ON or 
OFF.

Error <58> : RTE (58) - SET CURS failed. One or more parameters are not 
simple integer values - Expressions are not allowed.

Error <59> : RTE (59) - Invalid integer value passed with preformatting 
commands. You have specified a invalid integer value, after a control 
character in a preformatted string.

Error <60> : RTE (60) - Invalid value passed to preformatting command. You 
have specified an invalid value, required by a preformatting command. Please
check your expression and try again.

Error <61> : RTE (61) - SET TAB failed, invalid integer passed to command. 
Must be in range 0 - 80.

Error <62> : RTE (62) - Invalid variable name suggested to FOR Command, 
please verify the variable name used!

Error <63> : RTE (63) - Invalid operator in FOR command.

Error <64> : RTE (64) - Could find no terminating NEXT command for FOR 
command



© 1998 – 1999 ProSoft Technologies

Error <65> : RTE (65) - The Logical Operator requires it to have boolean 
(true/false) values on either side of it.

Error <66> : RTE (66) - Invalid Condition, Expression must return either 
boolean True or False.

Error <67> : RTE (67) - GOTO Failed, could not locate the label requested.
Error <68> : RTE (68) - DATETOSTR Failed, invalid number passed to function.
Please verify a valid real number was passed to this function.

Error <69> : RTE (69) - TIMETOSTR Failed, invalid number passed to function.
Please verify a valid real number was passed to this function.

Error <70> : RTE (70) - DATETOSTR Failed, invalid paramaters passed to 
function. Please verify you have passed a valid real number.

Error <71> : RTE (71) - TIMETOSTR Failed, invalid paramaters passed to 
function. Please verify you have passed a valid real number.

Error <72> : RTE (72) - FORMATDATETIME Failed, invalid parameters passed. 
Please verify parameters passed are a string and real number.

Error <73> : RTE (73) - FORMATDATETIME Failed, invalid Parameters passed, 
could not generate a valid string.

Error <74> : RTE (74) - STRTODATE Failed, invalid string passed to function.
Error <75> : RTE (75) - STRTODATE Failed, String contained no valid date.
Error <76> : RTE (76) - STRTOTIME Failed, invalid string passed to function.
Error <77> : RTE (77) - STRTOTIME Failed, String contained no valid time.
Error <78> : RTE (78) - CALL Command Failed, could not find procedure xxxx
Error <79> : RTE (79) - CALL Command Failed, out of return stack space.
Error <80> : RTE (80) - Cannot call Keyboard based command or function, 
Keyboard service is not running - Call "KEYBOARD ON" command.

Error <81> : RTE (81) - Expected single integer value passed to function.
Error <82> : RTE (82) - Expected single integer value/expression passed to 
function, parameter : <no>

Error <83> : RTE (83) - Expected single string value/expression passed to 
function, parameter : <no>

Error <84> : RTE (84) - Expected single simple integer value passed to 
function, parameter : <no>

Error <85> : RTE (85) - Expected single simple string value passed to 
function, parameter : <no>

Error <86> : RTE (86) - Expected a name of a valid <type> passed to 
function. Could not find file in parameter : <no>

Error <87> : RTE (87) - Out Of Sprite Space, too many sprite currently on 
screen.

Error <88> : RTE (88) - Out Of Sprite Image Space, too many sprite images 
cannot create another.



© 1998 – 1999 ProSoft Technologies

Error <89> : RTE (89) - Cannot create this sprite, sprite number is already 
created and in use.

Error <90> : RTE (90) - Call failed, sprite has not been created.
Error <91> : RTE (91) - Could not set sprite frame number, value is out of 
range.


	GamesBasic
	Alpha Version 1.0
	Commands And Functions
	‘This is a technical guide, expect no user guide :) ’ – D. Hanna
	‘If you find any mistakes, please let us know’ – J.Hunter [Author]
	Warning
	Table Of Contents
	Introduction
	Before you begin..

	Enjoy GamesBasic – I enjoying making it, and hope you enjoy using it!!
	James
	Copyright and ownership
	Overview
	Warranty and Guarantee
	Further reading

	Project Management
	GamesBasic - Interface
	The GamesBasic Interface – IDE.

	GamesBasic – Features and Bugs
	GamesBasic Features
	GamesBasic Bugs

	Expressions
	An overview of expressions
	What is an expression?
	A Simple Expression
	Complex Expressions


	GamesBasic understands and performs the rules of precedence correctly.
	Expression Operators

	Variables
	An overview of variables
	What is an Variables


	Variables
	Declaring variables
	LET Command
	Example (Simple Expression)



	LET CostPerHour = 5
	Example (Complex Expression)
	Variable Scope
	GLOBAL Command


	Syntax : GLOBAL <Variable>,<Variable>,<Variable>,….
	LOCAL Command

	Syntax : LOCAL <Variable>,<Variable>,<Variable>,….
	Overview of control structures
	What is a controls structure


	Control Structures - Loops
	Do..Loop Structure
	Do Command


	Syntax : DO
	Loop Command

	Syntax : LOOP
	Repeat..Until Structure
	Repeat Command


	Syntax : Repeat
	Until Command
	Example


	Let Counter = 10
	The above sample code will run until the counter become 10.
	While..Wend Structure
	While Command
	Wend Command


	Syntax : Wend
	Example

	Let Counter = 10
	Control Structures – Loops Special Commands
	BREAK LOOP Command

	Syntax : BREAK LOOP
	Control Structures - Jumps
	Goto Structure
	GOTO Command

	Gosub..Return Structure
	GOSUB Command
	RETURN Command


	Syntax : RETURN
	Gosub SayHello
	IF..Then..Else Structure
	Overview
	IF Command
	THEN Commands and ELSE Commands


	Format One
	Format Two
	ENDIF]
	Example

	If A = 1 Then B = 1 Else B = 2
	Example

	If A = 1 Then
	B = 1
	C = 1
	B = 2
	EndIf
	Graphic Commands
	Drawing Simple Shapes
	PLOT Command


	Syntax : PLOT [SCREEN <no><,>] <x>,<y>[,<colour>]
	Example

	PLOT 100,100,2
	PLOT SCREEN 0,100,100,2
	LINE Command
	Example


	Line 100,100 To 200,200
	SET LINE Command
	BOX Command
	Example


	Box 0,0 To 200,300
	CIRCLE Command
	TEXT Command
	Example


	Text 100,100,”Hello World”
	Extended Graphics
	BAR command
	ELLIPSE command
	ARC command
	PIE command
	POLYLINE command
	Example



	Polyline 100,100 To 200,200 To 300,300 To 150,150
	POLYGON command
	Advanced Graphics
	GFXLOCATE command
	PAINT command
	CLIP command


	Graphic Functions
	Location Functions
	GRLocateX Function


	Syntax : GRLocateX
	GRLocateY Function

	Syntax : GRLocateY
	Screen colour commands
	Colour commands, affecting graphics
	INK Command
	BRUSH Command


	Display Resolution commands & Functions
	Changing Resolution
	RESOLUTION Command Syntax: RESOLUTION <width>X<height>
	Example

	Creating and destroying screens
	SCREEN OPEN Command
	SCREEN OPEN Command


	Syntax : SCREEN CLOSE [<screen no>]
	SCREEN CLONE Command

	Syntax : SCREEN CLONE [<screen no>]
	Managing Screens
	SCREEN CURRENT Command
	SCREEN TO FRONT Command


	Syntax : SCREEN TO FRONT [<screen no>]
	SCREEN TO BACK Command

	Syntax : SCREEN TO BACK [<screen no>]
	Screen manipulation
	SCREEN OFFSET Command
	SCREEN RESIZE Command

	Screen update and setting commands
	SET AUTO UPDATE Command


	Syntax : SET [AUTO UPDATE <on>/<off>]
	Example

	Set AutoUpdate off
	DISPLAY UPDATE Command

	Syntax : DISPLAY [UPDATE <VB Wait>]
	Example

	Display Update
	CLS Command

	Syntax : CLS [SCREEN <no>[<,>]][<colour no>]
	Example

	Mathematical commands
	Different types of results
	Overview
	DEGREE Command


	Syntax : DEGREE
	RADIAN Command

	Syntax : RADIAN
	Number manipulation commands
	Overview
	INC Command
	DEC Command
	ADD Command


	Syntax : ADD <Variable>,<expression>[,<base> to <top>]
	SUB Command

	Syntax : SUB <Variable>,<expression>[,<base> to <top>]
	RANDOMIZE Command

	Mathematical functions
	Simple functions
	Overview
	ABS Function


	Syntax : Result = ABS (value)
	INT Function

	Syntax : Result = INT (real value)
	PI Function

	Syntax : Result = PI
	
	Extended mathematical functions
	MAX Function


	Syntax : Result = MAX (value1,value2)
	MIN Function

	Syntax : Result = MIN (value1,value2)
	SGN Function

	Syntax : Result = SGN (value)
	SQR Function

	Syntax : Result = SQR (value)
	The Sqr function returns the square of the value passed.
	EXP Function

	Syntax : Result = EXP (value)
	LOG Function

	Syntax : Result = LOG (value)
	The Log function returns the log base 10 of the supplied value.
	LN Function

	Syntax : Result = LN (value)
	The LN function returns the natural logarithm of the value supplied.
	Trigonometry functions
	COS Function (Cosine)


	Syntax : Number = COS (angle)
	The Cos function returns the cosine of a given angle.
	SIN Function (Sine)

	Syntax : Number = SIN (angle)
	The Sin function returns the sine of a given angle.
	TAN Function (Tangent)

	Syntax : Number = TAN (angle)
	The Tan function return the tangent of the supplied value.
	ACOS Function (Arc Cosine)

	Syntax : Number = ACOS (angle)
	The ACos function returns the Arc Cosine of a given angle.
	ASIN Function (Arc Sine)

	Syntax : Number = ASIN (angle)
	The ASin function returns the Arc Sine of a given angle.
	ATAN Function (Arc Tangent)

	Syntax : Number = ATAN (angle)
	HCOS Function (Hyperbolic Cosine)

	Syntax : Number = HCOS (angle)
	The HCos function returns the Hyperbolic Cosine of a given angle.
	HSIN Function (Hyperbolic Sine)

	Syntax : Number = HSIN (angle)
	The HSin function returns the Hyperbolic Sine of a given angle.
	HTAN Function (Arc Tangent)

	Syntax : Number = HTAN (angle)
	String Functions
	Simple Functions
	LEFT Function


	Syntax : String = LEFT (source string, count)
	RIGHT Function

	Syntax : String = RIGHT (source string, count)
	MID Function

	Syntax : String = MID (source string, start position, character count)
	INSTR Function

	Syntax : number = INSTR (guest string, host string [,start position])
	Case conversion.
	UPPERCASE Function


	Syntax : String = UPPERCASE (String)
	LOWERCASE Function

	Syntax : String = LOWERCASE (String)
	Manipulating Strings
	STRING Function


	Syntax : String = STRING (character, count)
	Example
	SPACE Function

	Syntax : String = SPACE (count)
	Example
	FLIP Function

	Syntax : String = FLIP (source string)
	Example
	REPEAT Function

	Syntax : String = REPEAT (source string, count)
	Example
	CHR Function

	Syntax : String = CHR (number)
	Example
	ASC Function

	Syntax : Number = ASC (string)
	LEN Function

	Syntax : Number = LEN (String)
	Text commands and functions
	Overview
	What are text commands and functions?
	Scope of commands and functions


	Font Manipulation Commands
	Overview
	FONT Command
	FONT SIZE Command
	FONT NAME Command
	Example



	Font Name “Tohama”
	Let New_Font = “Courier”
	FONT STYLE Command
	Example

	FONT COLOR Command
	Example

	FONT DMODE Command
	

	Font Manipulation Functions
	Overview
	FONTNAME Function
	Example

	FONTMAX Function
	FONTHEIGHT Function
	FONTWIDTH Function
	TEXTWIDTH Function
	MAXCHARSWIDE Function
	MAXCHARSHIGH Function
	FONTSTYLE Function
	XCURS Function
	YCURS Function


	Direct Font Manipulation Commands
	Overview
	BOLD Command
	ITALICS Command
	UNDER Command
	STRIKE Command
	INVERSE Command
	SHADE Command


	Text Commands
	Overview
	CENTER Command
	Example



	Screen Open 1,400,400
	PRINT Command
	? Command

	See Print command for more information
	Text Grids
	Overview
	SET TEXT GRID Command

	Text Grid - Navigation Commands
	HOME Command


	Syntax : HOME
	LOCATE Command
	MEMORIZE Command
	REMEMBER Command
	CMOVE Command
	CUP Command

	Syntax : CUP
	This command moves the text cursor up one place, the same as calling CMove 0,-1
	CDOWN Command

	Syntax : CDOWN
	This command moves the text cursor down one place, the same as calling CMove 0,1
	CLEFT Command

	Syntax : CLEFT
	This command moves the text cursor left one place, the same as calling CMove -1,0
	CRIGHT Command

	Syntax : CRIGHT
	This command moves the text cursor right one place, the same as calling CMove 1,0
	Text Grid - Scrolling
	HSCROLL Command

	Syntax: HSCROLL (<L>|<S>,<L>|<R>)
	VSCROLL Command

	Syntax: VSCROLL (<L>|<S>,<U>|<D>)
	Text Preformatting
	SET TEXT PREFORMATTING Command
	SET TAB Command

	Text Preformatting – Functions and escape codes
	PreSTYLE Function

	Syntax : Escape Sequence = PreStyle (<Bold>|<Italics>|<Underline>|<Strikeout>)
	Example

	Print PreStyle(BOLD) + “THIS IS IN HOLD!”
	Escape Sequence Generated

	Chr(27) + “Fx”
	PreINK Function

	Syntax : Escape Sequence = PreInk (expression)
	Example

	Print PreInk(1) + “This is in red!”
	Escape Sequence Generated

	Chr(27) + “Ix” + “ “
	X = A valid integer string, representing the colour index.
	PreMOVE Function

	Syntax : Escape Sequence = PreMove (X,Y)
	Example

	Home
	Escape Sequence Generated

	Chr(27) + “Mdx” + “ “
	PreLOCATE Function

	Syntax : Escape Sequence = PreLocate (X,Y)
	Example

	Locate 20,20
	Escape Sequence Generated

	Chr(27) + “Xz “ + “ “ + Chr(27) + “Yz” + “ “
	TAB Function

	Syntax : Escape Sequence = TAB
	Example

	Set Tab 8
	Escape Sequence Generated

	Chr(27) + “T“
	Note : No terminating space.
	PreCDown Function
	PreCUP Function
	PreCLeft Function
	PreCRight Function

	Syntax : Escape Sequence = PreCDown(Amount)
	Example

	Print “GamesBasic By James Happy” + PreCLeft(5) + “Hunter”
	Escape Sequence Generated

	Chr(27) + “Mdx” + “ “
	Text grid - functions
	GRID Function


	Syntax : Boolean = Grid
	Date Time commands and functions
	Overview
	What are date and time commands / functions?


	Date Commands and Functions
	Overview

	These commands and functions deal only with the reading and formatting of dates.
	CURRENTDATE Function

	Syntax : Result = CurrentDate
	DATETOSTR Function

	Syntax : Result = DATETOSTR(<expression>)
	STRTODATE Function

	Syntax : Result = STRTODATE(<expression>)
	Time Commands and Functions
	Overview

	These commands and functions deal only with the reading and formatting of times.
	CURRENTTIME Function

	Syntax : Result = CurrentTime
	TIMETOSTR Function

	Syntax : Result = TIMETOSTR(<expression>)
	STRTOTIME Function

	Syntax : Result = STRTOTIME(<expression>)
	Date & Time Misc. Commands and Functions
	FORMATDATETIME Function

	Syntax : Result = FormatDateTime(<String>,<real>)
	Input : Keyboard Commands And Functions
	Overview
	WAIT KEY Command


	Syntax : Wait Key
	INKEY Function

	Syntax : String = Inkey
	KEYDOWN Function

	Syntax : Boolean = KeyDown(scancode)
	KEYSHIFT Function
	KEYCTRL Function
	KEYALT Function

	Syntax : Integer = KeyShift
	Example

	Print KeyShift
	User defined procedure and functions
	Overview
	Functions
	Procedures
	PROCEDURE Command


	Syntax : PROCEDURE <Name> [(<Variable>[,<Variable>])]
	Example

	Call Print_Text_Count(“Hello”)
	ENDPROC Command

	Syntax : ENDPROC
	CALL Command

	Syntax : CALL <Proc Name> [(<Variable>[,<Variable>])]
	EXITPROC Command

	Syntax : EXITPROC
	Debugging Commands & Functions
	Immedatate Mode
	What is Immedaite Mode?
	Commands and functions special to Immediate Mode.
	LINES Command


	Not supported yet. Will resize the display to <number> of lines.
	QUIT Command

	Syntax: QUIT
	STOP Command

	Syntax: STOP
	Not Yet Supported. Will cause GamesBasic to exit immediate mode and restart the application where it was interrupted.
	Error Messages
	Run-time error messages
	Overview
	Error Listing


	Error <6> : Illegal screen number.
	Error <7> : `TO` expected, <BLAH> found.'
	Error <8> : Illegal APPEAR speed, value must be between 1 and 50.
	Error <13> : Expected `On` Or `Off`, but <BLAH> found
	Error <15> : Run Time Error - Screen <x> is not open.
	Error <16> : Run Time Error - Loop stack overflow.
	Error <18> : Run Time Error - Invalid value within expression
	Error <19> : Run Time Error - Invalid operator within expression
	Error <20> : Run Time Error - Type mismatch within expression
	Error <21> : Run Time Error - Value too big for variable
	Error <24> : RTE (24) - Screen <x> is already open.
	Error <25> : RTE (25) - Screen dimensions are too big or too small.
	Error <27> : RTE (27) - Screen number <x> is invalid!
	Error <28> : RTE (28) - Screen x is not open.
	Error <35> : RTE (35) - COS, invalid value passed.
	Error <36> : RTE (36) - SIN, invalid value passed.
	Error <37> : RTE (37) - Invalid parameters passed to string function.
	Error <38> : RTE (38) - Invalid parameters passed to maths function.
	Error <39> : RTE (39) - ADD Command failed, could not find variable <x>.
	Error <40> : RTE (40) - SUB Command failed, could not find variable <x>.
	Error <49> : RTE (49) - ACOS, invalid value passed.
	Error <50> : RTE (50) - HCOS, invalid value passed.
	Error <51> : RTE (51) - ASIN, invalid value passed.
	Error <52> : RTE (52) - HSIN, invalid value passed.
	Error <56> : RTE (56) - FONT DMODE command failed, invalid value passed
	Error <63> : RTE (63) - Invalid operator in FOR command.
	Error <67> : RTE (67) - GOTO Failed, could not locate the label requested.
	Error <74> : RTE (74) - STRTODATE Failed, invalid string passed to function.
	Error <75> : RTE (75) - STRTODATE Failed, String contained no valid date.
	Error <76> : RTE (76) - STRTOTIME Failed, invalid string passed to function.
	Error <77> : RTE (77) - STRTOTIME Failed, String contained no valid time.
	Error <78> : RTE (78) - CALL Command Failed, could not find procedure xxxx
	Error <79> : RTE (79) - CALL Command Failed, out of return stack space.
	Error <81> : RTE (81) - Expected single integer value passed to function.
	Error <90> : RTE (90) - Call failed, sprite has not been created.

